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Abstract

This article provides an accessible introduction to the phenomenon of mono-
tone likelihood in duration modeling of political events. Monotone likelihood
arises when covariate values are monotonic when ordered according to failure
time, causing parameter estimates to diverge toward infinity. Within political
science duration model applications, this problem leads to misinterpretation,
model misspecification, and omitted variable biases, among other issues. Us-
ing a combination of mathematical exposition, Monte Carlo simulations, and
empirical applications, this article illustrates the advantages of Firth’s penal-
ized maximum likelihood estimation in resolving the methodological complica-
tions underlying monotone likelihood. Our results identify the conditions under
which monotone likelihood is most acute and provide guidance for political sci-
entists applying duration modeling techniques in their empirical research.

Keywords: Duration models; monotone likelihood; penalized maximum likeli-
hood; external intervention; state partition
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Duration models have become ubiquitous in the political science literature—and

for good reason. Many topics in empirical and policy research have at their heart

questions about the time it takes until an event occurs. How long will a war last?

When will a regime stabilize or transition? When will the tenure of a political office

terminate? Duration models, which generate estimates of the conditional proba-

bility of an event occurring over time, are ideal for studying these questions (see

Box-Steffensmeier and Jones, 2004). For that reason, recent research has seen the

application of duration modeling strategies to topics as diverse as regime duration

(Gates et al., 2006; Svolik, 2008), the length of inter- and intra-state wars (Bennett

and Stam, 1996; Balch-Lindsay and Enterline, 2000; Cunningham, 2011), treaty ratifi-

cation (McKibben and Western, 2018), legislative position taking (Box-Steffensmeier,

Arnold and Zorn, 1997; Kropko and Harden, 2017), the fate of political leaders

(Omgba, 2009; Licht, 2017), and the effectiveness of international peacekeeping mis-

sions (Fortna, 2008), among others.

As duration modeling has become more popular, researchers have developed new

tools to facilitate and improve their application in empirical political science research.

Recent work has contributed to substantive improvements in the simulation of dura-

tion data (Harden and Kropko, 2018), the prediction of duration dynamics (Chiba,

Metternich and Ward, 2015), and the interpretation of results (Licht, 2011; Kropko

and Harden, 2017; Jones and Metzger, 2019). In this article, we add to this growing

body of literature by highlighting a methodological challenge that has to date escaped

scrutiny in the political science literature on duration models—monotone likelihood.

Monotone likelihood occurs when covariate values are monotonic when ordered

according to failure time. In practice, this most often occurs when a value of a covari-

ate, or a linear combination of covariates, uniquely correspond(s) to all termination

events. At face value, this might imply a substantively important relationship be-

tween variables, but from a methodological perspective it introduces mathematical
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complications that can lead to infinite coefficient estimates and standard errors for

a particular sample. This is problematic precisely because, as Heinze and Schemper

(2001, 114) aptly put it, “[i]n general, one does not assume infinite parameter values

in underlying populations.” Covariates, in other words, must covary. Yet in practice,

monotone likelihood generates such arbitrarily large (or small) parameter estimates

that meaningful and reliable substantive interpretation of results becomes impossible.

For example, in empirical applications detailed below, we demonstrate that monotone

likelihood can generate effect sizes that imply durations that are thousands, millions,

and even billions of times longer (or shorter).

To address these issues, this article provides an accessible introduction to the

phenomenon of monotone likelihood in duration modeling, with applications to po-

litical science research. We explain the nature of the problem and describe an easy

to apply corrective known as Firth penalized maximum likelihood estimation. While

this correction has been discussed by political scientists in logit and multinomial logit

settings (Zorn, 2005; Rainey, 2016; Cook, Niehaus and Zuhlke, 2018; Cook, Hays and

Franzese, 2018; Rainey and McKaskey, Forthcoming), it has not—to our knowledge—

been applied to duration modeling within political science research. This is a notable

omission, as the problems we highlight are especially acute in duration frameworks,

where researchers frequently model time-varying data that often multiplies by several

factors the number of observations for each unit (including the number of censored

observations), and which makes these zero-events subject to serial correlations (Box-

Steffensmeier and Jones, 2004, 95-118). Using simulation techniques as well as ap-

plications drawn from the literature, we illustrate the advantages of Firth penalized

maximum likelihood estimation in this context and provide guidance for researchers

who encounter monotone likelihood in their duration modeling applications.

The article proceeds as follows. Section 1 provides a general statement of the prob-

lem and identifies its consequences. Section 2 overviews Firth’s penalized maximum
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likelihood estimation and explains how it corrects for monotone likelihood. Section

3 reports the results of a large number of Monte Carlo experiments that (i) evalu-

ate the causes of monotone likelihood issues, (ii) assess the potential for penalized

maximum likelihood estimation to address them, and (iii) compare the performance

of a standard Cox proportional hazard model to that of a Cox proportional hazard

model with Firth’s penalized maximum likelihood correction. Section 4 demonstrates

the empirical implications of monotone likelihood—and the ameliorative properties of

penalized maximum likelihood—with applications drawn from the existing literature.

Section 5 concludes by summarizing our main findings and identifying fruitful paths

for future research.

1 Statement of the Problem

In duration modeling, monotone likelihood occurs when “at each failure time, the

covariate value of the failed individual is the largest of all covariate values in the risk

set at that time or when it is always the smallest” (Heinze and Schemper, 2001, 144;

also see Tsiatis, 1981). Put differently, monotone likelihood is a property of samples

where covariate values are monotonic when ordered according to failure time. Table

1 provides a stylized example. Here, X1 and X2 are monotonic continuous covariates:

they take on values that are always the largest (X2) or always the smallest (X1) of

all covariate values in the risk sets R(tf ) = {t1, t2, t3, t4, t5}.1 X3 provides another

1To fix these ideas, it is helpful to walk through the case of the monotonic covariate X2, which

takes values that are always the largest of all covariate values in the risk set. Assuming all cases

terminate during the period of observation, there are five individuals included in the risk set R(tf )

at the start of the observation period. When the first individual approaches termination at time

t1, it is the first individual that is taking on the largest value of X2 (8). After the first individual

terminates, they are removed from the risk set, leaving only four individuals remaining. In turn,

when the second individual approaches termination at time t2, it is the second individual that is now

taking on the largest value of X2 (3) among all of the four individuals who remain in the risk set.
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R(tf ) t1 < t2 < t3 < t4 < t5

X1 1 2 3 4 5 monotonic
X2 8 3 1 0 -2 monotonic
X3 1 1 1 0 0 monotonic
X4 5 3 4 2 1 non-monotonic
X5 1 0 1 1 1 non-monotonic

Table 1: Monotonicity in continuous and dichotomous predictors

example of monotonicity, this time in a binary predictor variable, where the values

X3 = 1 for the failed individuals at R(tf ) = t1, t2, t3 are the largest values of X3 in the

ordered risk set. X4 and X5 then represent non-monotonic ordering of failure times

for continuous and binary covariates, respectively.

Because the predictors X1, X2, and X3 are monotonic, the (partial) likelihood

of one’s estimated duration model will be monotone for the coefficient estimates

associated with these predictors. Consequently, while the likelihood function will

converge to a finite value, estimates of β̂1, β̂2, and β̂3 will diverge to positive or

negative infinity. For an estimator that does not account for this sample property,

the net result will be biased, model-dependent estimates with arbitrarily large (or

small) parameter values.2

In practice, monotone likelihood most often occurs when a value of a covariate, or a

linear combination of covariates, uniquely correspond(s) to all termination events—a

phenomenon akin to “separation” in other binary response models. In their pioneering

After the second individual terminates, they too are removed from the risk set, leaving only three

individuals remaining in the risk set. This process continues until all individuals have terminated.

In line with the Heinze and Schemper (2001, 144) quotation above, at each failure time, the value

of X2 for the failed individual is the largest of all values of X2 in the risk set at that time. Thus,

when we order X2 according to failure time, the resulting vector is monotonic.

2Specifically, the parameter estimates returned will correspond to the set of extreme, but finite,

values for which a model’s log-likelihood changes by less than a given software program’s assigned

tolerance threshold (Heinze and Schemper, 2001, 114).
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work on this issue, Albert and Anderson (1984) distinguish between two types of

separation: “complete” and “quasi-complete.”3 Translated into a duration modeling

framework, complete separation refers to instances in which the values of one or more

covariates uniquely correspond to all termination and survival events;4 quasi-complete

separation refers to instances in which one value of a covariate uniquely corresponds

to all termination events, but not to all survival events.5 In either case, monotone

likelihood arises due to the absence of overlap of failure times between two or more

groups. To see this intuitively, consider the case of a quasi-completely separating

dichotomous predictor XD, where all values XD = 0 correspond to the full set of

termination events. In such cases, there is no overlap of failure times in the two

groups XD = 0 and XD = 1, as there are no termination events associated with the

value XD = 1. Were a researcher to order XD’s values according to failure time,

the resulting vector would be monotonic (in this case, never increasing, as XD never

varies from 0 when a termination event occurs).

Figure 1 provides a visual representation of the problem using simulated duration

data. In the left panel, we plot predicted survival curves from a Cox model that

incorporates a single dichotomous covariate, Xa, that is non-monotonic (i.e. there

is overlap of failure times in the groups Xa = 1 and Xa = 0). In this panel, the

predicted proportion of cases that have not yet terminated gradually declines as a

function of Xa and time. In the right panel, we plot predicted survival curves from

a Cox model that incorporates a single dichotomous covariate, Xb, that is quasi-

completely separating (and thus, monotonic). In this case, all Xb = 0 correspond

3See also Zorn (2005); Rainey (2016).

4I.e. where all XD = 0 correspond to all termination events and all XD = 1 correspond to all

survival events, or vice versa.

5I.e. where all XD = 0 correspond to all termination events, but not all XD = 1 correspond to

all survival events, or where all XD = 1 correspond to all termination events, but not all XD = 0

correspond to all survival events.
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Figure 1: Survival curves for simulated Cox regressions

to the full set of termination events, meaning that there are no termination events

associated with the value Xb = 1, and thus there is no overlap of failure times in the

two groups Xb = 0 and Xb = 1. This causes the survival curve for Xb = 1 to become

horizontal in orientation. The corresponding Cox model estimate for Xb will diverge

to negative infinity.

Importantly, the absence of a quasi-completely separating covariate does not elim-

inate the risk of monotone likelihood, for two reasons. First, covariates do not need

to be quasi-completely separating to be monotonic when ordered according to failure

time. And second, even when no single covariate is monotonic, a linear combination

of covariates can be. As above, this leads to a flattening of the likelihood function

and an inflation of parameter values towards infinity.

At its root, then, monotone likelihood is the result of highly imbalanced and

thus highly predictive covariates. This problem can be decomposed into a number of

contributing factors (Bryson and Johnson, 1981; Johnson et al., 1982; Loughin, 1998;

Heinze and Schemper, 2001):
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dichotomous predictors: Models that rely on a large number of dichotomous

predictors are more likely to be afflicted by monotone likelihood. The categorical

nature of these variables restricts their range to just two values, thereby rendering

monotonicity more likely. While monotone likelihood may occur with any type of

data, it is less common in the case of continuous independent variables.

number of covariates: As the number of included covariates increases, the prob-

ability that the likelihood function will be monotone in at least one of the regression

parameters increases for two reasons. First, there are more opportunities for at least

one covariate to be monotonic when ordered according to failure time; and second,

even where no single covariate is monotone, a function of the covariates can be.

small sample sizes: As sample size decreases, the probability that at least one

covariate is monotonic when ordered according to failure time increases as a function

of small sample bias.

proportion of censored observations: Increased censoring generates imbal-

ance by increasing the number of zeros (censored observations) to ones (terminations)

on the termination indicator variable. Datasets that incorporate time-varying vari-

ables are especially susceptible to this concern owing to their counting process data

structure, which breaks up individual cases into multiple observation periods.

The various statistical programs and packages commonly used in the political

science literature differ in how they deal with monotone likelihood. Some packages will

detect nonconvergence, warn the user, and fail to estimate parameter values;6 others

will detect nonconvergence and issue a warning, yet will still estimate parameter

6The flexsurv package in R, for example, will warn users of a failure in the optimization routine

and will not estimate a model under monotone likelihood.
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values even for those variables afflicted by monotone likelihood;7 and still others will

fail to detect nonconvergence and estimate all parameter values in the model.8 The

parameter estimates returned in these instances will typically correspond to the set

of extreme, but finite, values for which changes in a model’s log-likelihood fall below

a given tolerance threshold, which itself is variable across software and estimation

routines.9 Consequently, in cases of monotone likelihood, a researcher’s results will

vary as a function of the software program and packages employed.

Faced with estimates that imply fitted probabilities that converge to extreme

positive or negative values, researchers are often forced to choose among a range

of distasteful remedies. Heinze and Schemper (2001, 114-115), for instance, review

some of these issues. First, some researchers simply drop the offending variable from

their analysis, introducing omitted variable bias. Second, researchers may choose to

change their modeling strategy, risking model misspecification in light of censored or

truncated data. Third, researchers may stratify on the offending variable, allowing

the hazard to vary by each category of the problematic variable, but consequently

forgoing estimating its own effect on duration. Fourth, biased estimates can result in

misinterpretation of substantive effects, or indeed in a decision to avoid interpretation

of results altogether. Fifth, and perhaps most insidious of all, a failure to understand

the underlying causes of monotone likelihood can contribute to the “file drawer prob-

lem,” where researchers simply do not publish or report models that seem otherwise

incorrect, hard to understand, or that fail to support a theory’s proposed hypotheses.

Notwithstanding these distasteful remedies, monotone likelihood remains a com-

7The coxph package in R, for example, will often (though not always) detect nonconvergence

and issue a warning. Parameter values are still estimated for the model.

8The streg function in Stata, for example, will often estimate model parameters without de-

tecting nonconvergence and without warning users.

9For example, in Stata, tolerance is set to 1e-4 (when an estimator is programmed via ml) or

1e-6, whereas in R most relevant packages use 1e-9 as the tolerance threshold.
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mon problem in political science research. To evaluate the extent to which it affects

the existing literature, we conducted a survey of all articles that employed a duration

model between the years 2008-2018 and that appeared in one of three leading polit-

ical science journals: the American Political Science Review, the American Journal

of Political Science, and the Journal of Politics.10 Of the 57 articles we identified,

14% contained strong evidence of monotone likelihood. This represents a substantial

share of contemporary duration model research across three of the political science

discipline’s top journals over the past decade. What is more, we found that mono-

tone likelihood can be identified across the empirical subfields of political science—

from American politics to comparative politics to international relations—and affects

cross-national studies and subnational analyses alike. And importantly, this estimate

is likely a conservative one in light of the “file drawer problem” noted above, whereby

many studies afflicted by monotone likelihood are never published. Thus, our survey

suggests that monotone likelihood regularly confronts researchers employing dura-

tion models in their empirical research. In what follows, we introduce a corrective

for this methodological challenge and illustrate its advantages using a combination of

mathematical exposition, Monte Carlo simulations, and empirical applications.

2 A Solution to Monotone Likelihood

Recent years have seen the development of correctives for monotone likelihood—

namely, the application of penalized maximum likelihood estimation approaches to

Cox regression models. In particular, a procedure developed by Firth (1993) to reduce

the bias of maximum likelihood estimates under monotone likelihood conditions has

been shown to solve the problem in a range of Cox regression applications (Heinze

and Schemper, 2001; Heinze and Dunkler, 2008), as well as for estimators designed

for other limited dependent variables (Zorn, 2005; Rainey, 2016; Cook, Niehaus and

10Details of the survey are reported in full in the supplemental appendix.
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Zuhlke, 2018). With the application of penalized maximum likelihood estimation,

finite parameter estimates of constant and time-dependent effects can be obtained

even in the presence of monotone likelihood.

In formal terms, monotone likelihood can generate bias in any estimated param-

eters (denoted generally as θ̂) when the score function at the true θ is unbiased (i.e.,

E[U(θ)] = 0) but its curvature is not linear in θ (i.e., the rate of change of the function

U(θ)′′ 6= 0). Given that E[U(θ)] = 0, any corresponding duration model’s estimation

function11 that is linear in θ will converge to a finite value; this is precisely what the

researcher wants when estimating a (generalized) linear model. However, because the

function’s curvature is not linear in θ, some parameter values will be severely biased

upward (if U(θ)′′ > 0) or downward (if U(θ)′′ < 0).

Consequently, when estimating θ under conditions of monotone likelihood, the

researcher introduces positive or negative bias into the score function. This arises

even if the function is otherwise unbiased with respect to identification. And notably,

because the rate of change of the score function’s curvature is itself not linear, such

bias will be increasing to infinity. This, in turn, can lead to at least one parameter

estimate converging to−∞/+∞ and a model that arbitrarily over- or under-estimates

true covariate effects (Firth, 1993, 28; Heinze and Schemper, 2001, 114).

To ameliorate the impact of monotone likelihood in affected samples, one can

introduce suitable corrective bias into the biased (partial) likelihood estimate θ̂ (Firth,

1993). In contrast to other plausible correctives—such as removing the offending

variable or arbitrarily trimming down coefficient size—this approach entails that one

uses the function’s (i.e., U(θ)) own estimates to identify an informed correction that is

proportional to the size of the uncorrected estimator’s bias under monotone likelihood

conditions. Mathematically, this correction is expressed as follows. First, assume a

standard Cox partial log-likelihood function:

11E.g., the Cox partial log-likelihood (see Equation 1).
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ln L(β) =
m∑
i=1

Xiβ − ln

[ ∑
h∈Rj

exp(Xhβ)

] (1)

where Rj denotes all observations at risk at time tj, i denotes the N distinct event

times, Xi denotes the covariates for observations that experienced a termination event

at tj, Xh denotes the covariates for all observations at risk, and β encompasses the

associated coefficients (see, Box-Steffensmeier and Jones, 2004, 52). Now, recall that

under monotone likelihood conditions, our partial likelihood estimate θ̂—or more

specifically, our β parameters for the offending variable(s) therein, which we denote

hereon βr—is biased. The purpose of the corrective bias approach is to provide

an informed correction that is proportional to the size of the bias in the estimator

caused under monotone likelihood conditions. Following Firth (1993), we term the

new corrective function U(βr)
∗, and express it as:

U(βr)
∗ ≡ U(βr) + αr = 0 (2)

where U(βr) is the uncorrected partial likelihood-estimated covariate, and αr is:

αr = 0.5 trace

{
I(β)−1

[
∂I(β)

∂βr

]}
(3)

In equation (3), I(β)−1 is the inverse information matrix evaluated at each β,

or the variance-covariance matrix for β̂. The term in brackets [·] is the derivative

of the information matrix with respect to βr:
∂
∂βr
{0.5 log|i(β)|}. Accordingly, αr

can be estimated using the Newton-Raphson algorithm or other standard (partial)

likelihood optimization routines, where each step is based on the current value of β̂.12

In simple terms, this correction “pushes against” the original (uncorrected estimator)

12A Bayesian interpretation of this correction, which involves finding the mode of the posterior

distribution, relies on using the Jeffreys (1946) invariant prior.
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bias. Thus, if U(βr) has a positive bias, the score function will be shifted downward

by αr at each point; if U(βr) has a negative bias, the score function will be shifted

upward.

Modification of the score function in this manner directly addresses the aforemen-

tioned challenge of arbitrarily large (or small) parameter values in monotone likelihood

contexts through its assurance of finite parameter estimates (Heinze and Schemper,

2001, 115). To see the latter point, note that because this informed correction builds

on the uncorrected function’s own variance-covariance matrix, it is proportional to

the size of the bias in the uncorrected estimator. This quality provides an important

advantage over uninformed corrections, which are likely to over- or under-estimate

the bias in the estimation results under monotone likelihood conditions. Specifically,

as βr → ±∞, the highest/lowest observed value of a covariate xk in each risk set gets

weighted more heavily compared with other covariates, as long as there are at least

k distinct failure times. This helps to ensure that even if the (log) likelihood L is

monotone, the determinant of I(β) still approaches zero, which in turn means that

the penalized maximum likelihood L∗ is guaranteed to attain a finite, bias-corrected

value of β̂. Indeed, as first illustrated by Firth (1993) in a general context and by

Heinze and Schemper (2001) in a duration model context, L∗ is asymptotically con-

sistent and is otherwise resistant to the small-sample biases and arbitrary parameter

estimates that arise in (partial) likelihood estimation. In that regard, Firth’s (1993)

correction lowers estimation bias empirically, regardless of issues of substance (e.g.,

“what is an intervention?”) or thresholds of “plausibility/implausibility,” which are

inherently subjective to a particular application.

For the remainder of this paper, we accordingly assess the benefits of penal-

ized maximum likelihood in Cox regression applications—hereafter referred to as the

“Firth Cox” (Heinze and Schemper, 2001; Heinze and Dunkler, 2008). The Cox model

is generally viewed as the default choice among contemporary political scientists for

13



applied duration modeling (Box-Steffensmeier and Jones, 2004; Ruhe, 2018, 91), and

can be reformulated and interpreted as an exponential family model (Heinze and

Schemper, 2001; McCullagh and Nelder, 1989, 429). The latter is appealing in this

case in that it ensures that the bias-reducing properties of the Firth correction—as

originally established for generalized linear models (Firth, 1993)—will carry over to

the Cox context (Heinze and Schemper, 2001, 115). This property has been empir-

ically confirmed for the Firth Cox model by both Heinze and Schemper (2001, 117)

and Heinze and Dunkler (2008, 6464), and thus serves as an additional justification

for use of the Firth Cox model in these contexts.

That being said, we note that monotone likelihood issues can equally impact

parametric duration models, such as the Weibull. Accordingly, in the ensuing sections

we report empirical models based not only upon the standard Cox model and the Firth

Cox model, but also upon the Weibull model. The latter application illustrates that

the biases in non-corrected estimators under conditions of monotone likelihood in

duration analysis are relevant to parametric and semi-parametric models alike.

3 Monte Carlo Simulations

To evaluate the causes of monotone likelihood—as well as to assess the potential for

penalized maximum likelihood estimation to address monotone likelihood issues—we

conducted a large number of Monte Carlo (MC) experiments. These experiments

compare the performance of a standard Cox proportional hazard model to that of a

Cox proportional hazard model with Firth’s penalized maximum likelihood correction

(Firth Cox). We expand upon and improve past simulation studies of monotone

likelihood in three ways.

First, we examine the problem under a wider range of conditions: five varying

14



levels of censoring,13 at six different sample sizes,14 across three different specification

scenarios.15 Importantly, our Monte Carlo experiments are designed to ensure we do

not directly modify the severity of monotone likelihood, but rather allow the sever-

ity of this problem to arise organically as a function of (imbalanced) independent

variables that are themselves a product of varying sample sizes, changing levels of

censoring, and different rates of omitted variables. Second, unlike previous studies,

we simulate duration data to match the (nonparametric) Cox model’s assumed data

generating process via the methods recently developed by Harden and Kropko (2018),

including a mixture of continuous and imbalanced binary predictors. Finally, we as-

sess the performance of the Cox and Firth Cox models across our resulting 90 distinct

combinations of varying conditions in terms of (i) the proportion of relevant simu-

lations that saw nonconvergence due to infinite or near-infinite parameter estimates

and (ii) our parameter estimates’ root mean squared errors (RMSEs), averaged across

all simulations. When doing so, we maintain consistent iteration limits on the Cox

and Firth Cox models during each simulation run, which provides us with conserva-

tive estimates of the latter model’s abilities to overcome monotone likelihood issues.

Altogether, these MC experiments provide to our knowledge the most comprehensive

assessment of the performance of Firth’s correction to duration modeling to date.

Figure 2 summarizes the results of our MC experiments, reporting nonconvergence

rates and RMSEs for the estimates associated with a simulated binary independent

variable of interest, x1.16 Each column of subfigures depicts a differing level of censor-

ing; the x-axes vary the N evaluated; and the y-axes depict either the proportion of

13I.e. the proportion of all duration cases that exhibit non-terminations within our period of

observation—which we set to range across c = {0.05, 0.25, 0.5, 0.75, 0.95}.
14The number of observations, N , which we assign as N = {100, 250, 500, 1000, 2000, 5000}.
15The degree of omitted variable bias, where we consider four, two, and no omitted variables.

16Our full MC results are reported in the supplemental appendix.
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nonconvergence obtained across all relevant simulations (subfigure row 1) or the root

mean squared errors (RMSEs) for β̂1 (subfigure row 2). We plot the relevant values

obtain for our Cox (triangles) and Firth Cox (circles) models within each subfigure

after averaging over the distinct levels of omitted variable bias evaluated. The latter

condition was collapsed in Figure 2 for summary purposes; it is presented in disaggre-

gated fashion in our supplemental appendix. Note that the scale of nonconvergence

and RMSEs across these different specifications increases markedly as the level of

censoring increases, as denoted by the differing y-axis values on these plots.

We find that analyses afflicted by monotone likelihood will frequently encounter

nonconvergence and inaccurate parameter estimates when using a standard Cox

model, but not when using the Firth Cox model. This is especially the case for

samples of 100-500 observations, regardless of the level of censoring. However, for

levels of censoring at or greater than 75%—common in duration model applications

with time-varying covariates—the aforementioned threats to accuracy and conver-

gence with the standard Cox model increase substantially, and can persist in samples

as large as 1,000-2,000 observations. For instance, Figure 2’s subfigure columns four

and five (75%-95% censoring) demonstrate that within samples of 100-500 obser-

vations, researchers will on average encounter nonconvergence rates of 40% for the

standard Cox model—versus nonconvergence rates of 3% for the Firth Cox model.

Under these same conditions, the Cox model β̂1 RMSE’s are on average 250 times

larger than those obtained within the Firth Cox model. At samples of 1000-2000

and 95% censoring, the Firth Cox model continues to recover β̂1’s that are 165 times

more accurate than those of the Cox model, with non-convergence rates that are 8.4

percentage points lower than the Cox model. Our additional MC assessments within

the supplemental appendix reaffirm each of these findings.

In short, monotone likelihood arising from imbalanced predictors leads to inaccu-

racy and nonconvergence in one’s parameter estimates for the Cox model when one’s
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Figure 2: Nonconvergence and RMSE’s for x1 Across All Monte Carlo Experiments
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number of observations is lower than 1000. At levels of 75%-95% censoring, the Cox

model becomes practically unusable for small-to-moderate sample sizes, exhibiting

nonconvergence due to (near-)infinite parameter estimates in a substantial share of

all such simulations. In contrast, the Firth Cox model is much less sensitive to these

monotone likelihood challenges, and in most instances recovers parameter estimates

that are several orders of magnitude more accurate than those of the Cox model.

Indeed, even in those cases where the Cox and Firth Cox models exhibit similar

nonconvergence rates, we find that the latter always obtains lower RMSEs across all

parameters and experimental conditions evaluated, and further confirm these find-

ings for mean squared errors (MSEs) in our supplemental appendix. In line with

recent logit-based findings (Rainey and McKaskey, Forthcoming), these results sug-

gests that penalized maximum likelihood corrections may be preferable to standard

Cox estimation frameworks in regards to accuracy of parameter estimates within low-

to-moderate sample sizes, irrespective of the level of censoring or degree of imbalance

in one’s binary predictors.

4 Empirical Applications

We now turn to demonstrate the empirical implications of monotone likelihood—and

the ameliorative properties of Firth Cox models—with applications drawn from the

existing literature.

4.1 Application 1: External Intervention and Conflict Duration

In a widely-cited article, Regan (2002) examines the effect of external intervention on

the duration of civil war. Developing a theory that highlights interveners’ manipula-

tion of domestic combatants’ costs of fighting and expectations of victory, he hypoth-

esizes that opposing interventions prolong a conflict’s expected duration. To test this

proposition, he compiles a novel dataset of external intervention in intrastate conflicts
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fought between 1944 and 1999. The dataset includes 150 conflicts, of which 119 ter-

minated during the period of observation.17 Each conflict is measured at a monthly

resolution and coded across a range of variables recording various characteristics of

the conflict. A set of dichotomous indicators capture whether the conflict received

military and/or economic interventions, and if so, whether those interventions sup-

ported opposing domestic combatant forces.18 The resulting dataset is cross-national

time-series in structure, with monthly observations recorded for all time-varying vari-

ables (N=13,048).

Table 2 reproduces the main findings of the article. Model 1 replicates the cor-

responding model from the study, which employs a Weibull duration model with an

accelerated failure time (AFT) parameterization; model 2 reports a modified version

of the original specification, dropping a conflict intensity control; model 3 employs a

standard Cox model; and model 4 adopts a Firth Cox approach.

We successfully replicate the original study.19 However, our results suggest that

substantial nonconvergence issues afflict the estimated parameter values under both

the Weibull AFT and standard Cox specifications. Indeed, models 1-3 estimate ex-

treme coefficient values for the variables recording opposing interventions, military

interventions, economic interventions, and biased interventions on the side of rebel

17In the dataset, intrastate conflict is defined as “armed combat between groups within state

boundaries in which there are at least 200 fatalities.” See Regan (2000, 21).

18We refer readers to Regan (2002, 66-67) for a description of the included covariates. Note that

opposing interventions are those that take place in an offsetting sequence and/or those instances

where multiple interventions support opposing actors; military interventions include those that in-

volve one of six categories (troops, naval support, equipment or aid, intelligence or advisors, air

support, or sanctions); and economic interventions include those that involve the use of economic

instruments to affect the balance of power between domestic combatants.

19While we were unable to replicate the results in R due to convergence issues, we successfully

replicated the results in Stata SE, Version 11.2.

19



Variables
Model 1

Weibull AFT
Model 2

Weibull AFT
Model 3

Cox
Model 4
Firth Cox

opposing
11.336***
(1.028)
8.377×104

21.451***
(1.303)
2.070×109

-17.028***
(0.459)
4.025x10−8

-1.635**
(0.691)
0.195

military intervention
11.326***
(1.007)
8.292×104

19.339***
(1.505)
2.510×108

-15.357***
(0.744)
2.141x10−7

0.780
(0.897)
2.182

economic intervention
21.997***
(1.965)
3.573×109

39.806***
(2.611)
1.939×1017

-31.867***
(1.227)
1.450x10−14

0.346
(1.384)
1.414

time × force
0.018
(0.017)
1.019

0.022
(0.021)
1.023

-0.021
(0.017)
0.979

-0.008
(0.034)
0.992

use of force
-0.533
(0.797)
0.587

-1.060
(1.437)
0.346

0.791
(0.890)
2.207

0.720
(1.203)
2.054

homogeneity
-0.005
(0.003)
0.995

-0.007
(0.008)
0.993

0.005
(0.005)
1.005

0.005
(0.006)
1.005

fatalities
0.000***
(0.000)
1.000

0.000**
0.000
1.000

-0.000**
(0.000)
1.000

-0.000
(0.000)
1.000

intensity
0.041***
(0.006)
1.042

ethnoreligious
0.309**
(0.122)
1.362

0.697**
(0.309)
2.007

-0.421**
(0.189)
0.656

-0.411**
(0.204)
0.663

time × government
-0.001
(0.017)
0.999

0.007
(0.024)
1.007

0.006
(0.020)
1.006

0.007
(0.025)
1.007

time × opposition
-0.023***
(0.005)
0.978

-0.030***
0.006
0.970

0.024**
(0.009)
1.024

0.016
(0.027)
1.016

target (gov./opp.)
-10.986***
(1.125)
0.000

-19.467***
(1.473)
0.000

15.253***
(0.831)
4.211x106

-0.731
(0.929)
0.481

international org.
0.042
(0.420)
1.043

0.765
1.003
2.150

-1.519
(1.280)
0.219

-0.379
(0.981)
0.684

intervention
0.086
(0.129)
1.090

0.618*
0.365
1.854

-0.378*
(0.226)
0.685

-0.380*
(0.230)
0.684

Conflict Episodes 150 150 150 150
Terminations 119 119 119 119
Observations 13048 13048 13048 13048

Table 2: Replication and extensions of Model 1, Table 1, as reported in Regan (2002, 69).
Models 1-3 report variable coefficients, with robust standard errors clustered on
conflict in parentheses, followed by exponentiated coefficients. Model 4 reports
Firth Cox penalized maximum likelihood estimates, with bootstrapped standard
errors in parentheses, followed by exponentiated coefficients. *p ≤ .10; **p ≤ .05;
***p ≤ .01. All significance tests are two-tailed.

forces (represented in the original study as the ‘target’ variable). The magnitude of

the substantive effect of each of these variables is untenably large.

Consider first the Weibull AFT model estimates. Given the model’s accelerated
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failure time parameterization, a positively signed coefficient implies longer expected

durations. Substantive interpretation is facilitated by exponentiating the raw coef-

ficients, which provides relative expected durations given a one-unit increase in xi.

Thus, model 1 estimates that conflicts that experience opposing interventions are

over 83,000 times longer than conflicts that do not experience opposing interventions.

Likewise, conflicts that are subject to military interventions are estimated to be over

82,000 times longer, and those that experience economic interventions are estimated

to be over 3,500,000,000 times longer. On the other hand, the expected duration of

conflicts that receive biased interventions on the side of rebel forces is less than 0.0001

percent that of conflicts that do not experience biased interventions on the side of

the rebels (i.e. e−10.986). All four variables are statistically significant at conventional

levels (p ≤ .01), but the magnitude of the substantive effects estimated by the Weibull

AFT model strain credulity.

Similar results are identified in model 2, which drops a conflict intensity control.20

The magnitude of the substantive effects for opposing interventions, military inter-

ventions, economic interventions, and biased interventions on the side of rebel forces

are estimated to grow even larger in this model, with time ratios converging towards

infinite values. These estimates suggest considerable bias owing to monotone like-

lihood conditions, with parameter values that are more a function of mathematical

complications than empirical evidence.

20The conflict intensity indicator included in the original dataset and code, labeled avemnth,

appears to be a transformed measure of a conflict’s total duration rather than a measure of its

intensity (the average number of casualties per month of the conflict). Indeed, the correlation

between avemnth and a conflict’s total duration is 0.9998. Consequently, the inclusion of avemnth

as a right-hand side variable generates considerable model instability owing to misspecification and

measurement error. Given that conflict intensity is also captured by the fatalities variable—a time-

invariant covariate that records a conflict’s total death toll—we drop the avemnth variable in models

2-4.
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Model 3 demonstrates that the extreme estimates we identify are not unique to

duration models that adopt a Weibull AFT specification. This model re-runs the

previous analysis, but this time employs a standard Cox model. Note that because

Cox models are expressed in terms of a hazard rate, interpretation of estimated co-

efficients is opposite that of Weibull AFT models (i.e. a positively signed coefficient

implies shorter expected duration). Substantive interpretation is again facilitated by

exponentiating the raw coefficients, which can then be interpreted as hazard ratios.

To calculate the effect of a one-unit change in xi, one subtracts 1 from the reported

hazard ratio and multiplies by 100 to recover the percent change in the hazard of

conflict termination. Thus, model 3 estimates that opposing interventions, military

interventions, and economic interventions all decrease the hazard of conflict termi-

nation by over 99.999 percent. That is, these variables are estimated to virtually

eliminate the likelihood of conflict termination. Biased interventions on the side of

rebel forces, on the other hand, are estimated to increase the hazard of conflict termi-

nation by over 4,000,000 percent—that is, they are estimated to virtually guarantee

the end of fighting. All four variables are again statistically significant at conventional

levels (p ≤ .01), but the size of the estimated substantive effects are impossibly large.

To explore the extent to which monotone likelihood is responsible for these ex-

treme results, Table 3 provides an overview of imbalance on the problematic variables

discussed above. We find that while 297 observations record the occurrence of oppos-

ing interventions, no observations record a conflict termination during a month when

one of these opposing interventions took place. Notably, this is powerful evidence

in support of Regan’s hypothesis that opposing interventions prolong a conflict’s ex-

pected duration. But from a methodological perspective, this means there is no

overlap of failure times between those conflicts that experience an opposing inter-

vention and those that do not. Indeed, the variable is quasi-completely separating:

all values opposing = 0 correspond to all termination events. Consequently, it is
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Termination = 0 Termination = 1 Imbalance Ratio

opposing = 1 297 0 297:0
economic intervention = 1 132 0 132:0
military intervention = 1 897 9 100:1
target (gov./opp.) = 1 977 9 109:1

Table 3: Imbalance of problematic variables of interest

monotonic when ordered according to failure time, resulting in the inflated coefficient

estimates reported in Table 2. This not only impedes meaningful interpretation of the

effect of opposing interventions, but also induces considerable instability in parameter

estimates of the model’s other covariates as well.

The same problem that afflicts the opposing interventions indicator can be identi-

fied for the other variables with extreme coefficient estimates. For example, while 132

observations record economic interventions, no observations record an economic in-

tervention in the final month of a war. Here again, there is no overlap of failure times

between those conflicts that experience an economic intervention and those that do

not;21 inflated parameter values are the inevitable result. The values of the variables

recording military interventions and biased interventions do not uniquely correspond

to all termination events, but here too significant imbalance introduces convergence

issues. Thus, while a total of 906 observations record military interventions, only 9

observations saw a conflict end during one of the conflict-months experiencing these

military interventions. Similarly, while a total of 986 observations record biased in-

terventions on the side of rebel forces taking place during ongoing fighting, only 9

observations record biased interventions on the side of rebel forces during the final

month of a war. Given the degree of imbalance on both predictor variables, their

linear combination with other covariates in the model induces monotone likelihood.

The net result is extreme parameter values in the Weibull AFT and standard Cox

models.

21I.e. all values economic intervention = 0 correspond to all termination events.
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More generally, while the dataset enjoys a large number of observations (N=13,048),

it is also characterized by a high level of censoring. Both conditions are a function of

its conflict-month data structure, which records covariate values for individual con-

flicts for every 1-month period.22 On the one hand, this high-resolution data structure

has some important strengths: it enables fine-grained measurement of relevant vari-

ables across time and provides increased statistical power by increasing the number of

observations included in the dataset. On the other hand, this data structure risks the

introduction of covariate imbalance, especially for dichotomous variables, by increas-

ing the number of censored observations recorded on the conflict termination indicator

variable. To see this, consider that of the 150 conflicts recorded in the dataset, only

119 terminated during the period of observation. In practice, this means that of the

13,048 total observations in the dataset, only 119 are coded as a conflict termination

event (i.e. where ‘0’ = censored and ‘1’ = terminated). The net result is a censoring

level in excess of 99 percent. Notably, such a high level of censoring is not uncommon:

especially in duration models with time-varying covariates, higher resolution coding

procedures and data structures go hand-in-hand with higher levels of censoring.

To ameliorate the problem of monotone likelihood, model 4 re-runs the analysis

using a Firth Cox model, which implements penalized maximum likelihood. With

this correction, the model’s estimated coefficients for the imbalanced predictors are

both plausible and in-line with other studies. Consider the results identified for op-

posing interventions—the variable of interest that serves to test Regan’s hypothesis

that countervailing interventions are associated with longer conflict durations. The

model estimates these interventions to be associated with a 80.5 percent decrease in

the hazard of conflict termination relative to conflicts that did not experience op-

posing interventions—a statistically significant result (p ≤ .01). While this estimate

22There is considerable variation in the duration of conflicts included in the dataset. For example,

while the shortest conflict lasts just 1 month, the longest conflict spans 616 months.

24



remains substantively large, it is in line with studies that report similar effect sizes

when conflicts see the simultaneous provision of troops to both government and rebel

forces (Balch-Lindsay and Enterline, 2000), or when civil wars become afflicted by

competitive intervention (Anderson, 2019).

The indicator variables recording military interventions, economic interventions,

and biased interventions on the side of rebels flip signs and are no longer statistically

significant, but the estimated coefficients for all three measures no longer take on ex-

treme values. The application of penalized maximum likelihood estimation eliminates

the convergence issues associated with these variables, providing finite parameter esti-

mates even when confronted by the problems of monotone likelihood identified above.

In sum, we find support for Regan’s hypothesis that opposing interventions gen-

erate longer civil wars. While Weibull AFT and standard Cox models estimate un-

realistically large effect sizes, we correct for the problem of monotone likelihood and

identify estimates that are both plausible and in line with other studies. Our appli-

cation of the Firth Cox approach highlights the value of penalized maximum likeli-

hood estimation, which we find offers significant advantages for scholars encountering

nonconvergence issues and inaccurate parameter estimates when employing duration

models with imbalanced predictors.

4.2 Application 2: Partition and Peace Duration

In an important article on the prospects for peace following state partition, Tir

(2005) examines the conditions under which countries avoid domestic conflict fol-

lowing their division into rump and secessionist states. Developing an argument

that links partition-related factors to post-partition outcomes, he hypotheses that

conflict is more likely in partitioned countries that emerge from a violent partition

process (e.g. Bosnia/Serbia), whereas peace is more likely in partitioned countries

that emerge from a peaceful partition process (e.g. Czech Republic/Slovakia). To
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test this proposition, he compiles a dataset of all cases of state partition that oc-

curred during the 20th-century. Adopting a country-year format, the dataset records

observations for both rump and secessionist states for each year following their parti-

tion through to 1996. A binary variable records whether the process of partition was

peaceful or violent; additional variables record whether the partition was ethnically-

based and whether the post-partition state was the secessionist (as opposed to the

rump) country. Finally, a battery of controls capture the state’s level of ethnic het-

erogeneity, its level of economic development, the coherence of its political regime,

and its population size.23

As Tir’s research question seeks to identify the determinants of post-partition

peace duration, the dataset records as a case of “failure” those country-years that

experience the termination of a peace episode (i.e. the onset of domestic conflict).

While the original study employs two measures of domestic conflict—the occurrence

of armed conflict and the onset of civil war—we focus on the latter dependent variable,

which draws on data compiled by the Correlates of War project (Small and Singer,

1982; Sarkees, 2000).24 In total, there are 1,532 years of observation that capture

49 peace episodes, of which 18 experienced peace terminations during the period of

observation.

Table 4 reproduces and extends the findings of the article. Model 5 reports the

original specification, which employs a standard Cox model. The results suggest that

considerable nonconvergence issues afflict the parameter estimates of the independent

23We refer readers to Tir (2005, 553-554) for a description of the included covariates. Note

that regime coherence is a binary measure that captures whether the state’s political regime is

either democratic or authoritarian; both regime types are considered to be “coherent” relative to

anocracies. For ease of interpretation of results, we rescale the ethnic heterogeneity measure in the

models reported below.

24In this dataset, civil wars are defined as sustained conflicts taking place within the boundaries

of an internationally-recognized state that cause at least 1,000 battle-related fatalities.

26



Variables
Model 5

Cox
Model 6
Firth Cox

Model 7
Firth Cox

peaceful partition
-19.489***
(0.613)
0.000

-2.459**
(1.231)
0.086

-2.537*
(1.785)
0.079

ethnic partition
-0.534*
(0.400)
0.586

-0.540
(1.447)
0.583

-0.689
(1.358)
0.502

secessionist country
-1.516**
(0.727)
0.219

-1.490
(1.250)
0.225

-1.545
(1.473)
0.213

ethnic
heterogeneity

-0.001
(0.039)
0.999

-0.016
(0.078)
0.984

-0.034
(0.106)
0.967

ethnic
heterogeneity
squared

-0.000
(0.000)
1.000

0.000
(0.001)
1.000

0.000
(0.001)
1.000

economic
development

-0.817
(1.196)
0.442

regime coherency
-0.924***
(0.378)
0.397

-0.939
(0.767)
0.391

-0.605
(1.058)
0.546

population size
0.348**
(0.208)
1.417

0.253
(0.436)
1.288

0.110
(0.394)
1.116

Peace Episodes 49 49 36
Terminations 18 18 18
Observations 1532 1532 1436

Table 4: Replication and extensions of Model 4, Table 1, as reported in Tir (2005, p. 556).
Model 5 reports variable coefficients, with robust standard errors clustered on con-
flict in parentheses, followed by exponentiated coefficients. Models 6 and 7 report
Firth Cox penalized maximum likelihood estimates, with bootstrapped standard
errors in parentheses, followed by exponentiated coefficients. *p ≤ .10; **p ≤ .05;
***p ≤ .01. In keeping with the original study, all significance tests are one-tailed.

variable of interest—the indicator for a peaceful partition process. In particular, the

model estimates that peaceful partitions decrease the hazard of peace termination

by over 99.999 percent; that is, peaceful partition processes are found to virtually

guarantee the continuation of peace in rump and secessionist states. These results

are strongly statistically significant (p ≤ .01) and represent powerful evidence in

support of Tir’s hypothesis. However, the estimated effect sizes, which converge

toward negative infinity, undermine substantive interpretation of the results.

Is monotone likelihood to blame for the extreme effect sizes? Table 5 provides a

descriptive overview of the peaceful partition indicator’s degree of imbalance. We find

that while a total of 485 observations record country-years that followed a peaceful

27



Termination = 0 Termination = 1 Imbalance Ratio

peaceful partition = 1 485 0 485:0

Table 5: Imbalance of problematic variable of interest

partition, none of these observations saw the onset of a civil war.25 In other words,

there is no overlap in failure times between cases that did and did not experience

a peaceful partition, as there are no termination events associated with the value

peaceful partition = 1. Consequently, the indicator variable is monotonic when

ordered according to failure time. This accounts for the extreme parameter values

estimated by the model.

To solve the problem of monotone likelihood in this case, model 6 re-runs the

analysis employing a Firth Cox model. With penalized maximum likelihood estima-

tion, convergence issues are ameliorated. This model estimates peaceful partitions

to be associated with a 91.4 percent decrease in the hazard of peace termination (p

≤ .05). To be sure, this remains a large effect size. However it is now both more

reasonable and substantively meaningful. While monotone likelihood resulted in al-

most infinite effect size estimates when employing a standard Cox model, the use of

penalized maximum likelihood corrects for this problem and enables the estimation

of finite parameter values even in the face of highly imbalanced covariates.

Model 7 extends the analysis further, incorporating a measure of the partitioned

state’s level of economic development. This variable was excluded in the original

article’s estimated model owing to the rarity of peace terminations and missing data

issues, which left insufficient variance for the joint estimation of the peaceful parti-

25Note that the full dataset does have four cases where peaceful partition = 1 and

termination (i.e. civil war onset) = 1; however, due to listwise deletion resulting from missing

data, these cases are dropped when the model is estimated, resulting in the imbalance reported in

Table 5.

28



tion indicator and the economic development variable.26 As noted above, dropping

problematic variables is one of a number of distasteful remedies scholars have in the

past been forced to select when encountering monotone likelihood in their empirical

research. We demonstrate the advantages of penalized maximum likelihood estima-

tion by (re)incorporating the economic development indicator into a fully specified

model.

Our model 7 results show that convergence issues need not force researchers to

risk omitted variable bias when encountering monotone likelihood—Firth’s corrective

ensures finite parameter estimates can be obtained even when insufficient variance

undermines the joint estimation of covariates under a standard maximum likelihood

approach. We find that the estimate of the peaceful partition indicator is robust

to the incorporation of the economic development indicator, though there is greater

uncertainty around this estimate in the fully specified model.

In sum, we find evidence in support of Tir’s hypothesis that sustained peace is

more likely in partitioned countries that emerge from a peaceful partition process.

While standard Cox model estimates suffer from monotone likelihood problems that

complicate substantive interpretation of the results, we show that Firth Cox models

can ameliorate this issue to render parameter estimates both meaningful and plausi-

ble. Further, while Cox models require that some variables be omitted owing to in-

sufficient variance, we demonstrate that Firth Cox models enable researchers to avoid

this distasteful remedy and estimate fully saturated models even under low-variance

conditions. Here again, our results underscore the value of penalized maximum like-

lihood estimation when encountering monotone likelihood in duration modeling of

political events.

26See Tir (2005, 555, footnote 14).
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5 Conclusion

The problem of (quasi-)complete separation within (multinomial) logit models is

now widely understood among political scientists (Zorn, 2005; Rainey, 2016; Cook,

Hays and Franzese, 2018; Cook, Niehaus and Zuhlke, 2018). While such separa-

tion problems—and the monotone likelihood challenges that arise from them—are

also commonplace in duration models, this issue has not yet been widely recognized

within political science. Indeed, this issue is likely even more acute in the latter set-

ting due to the time-dependent nature of duration data. We rectify this deficiency

by outlining the problem of monotone likelihood within duration modeling and by

detailing a readily accessible solution: the application of Firth’s penalized maximum

likelihood approach to Cox model estimation. We then evaluate the extent of the

monotone likelihood problem for duration analyses in political science via a series of

simulations and replications, before demonstrating the substantial advantages of the

Firth Cox model in each context.

In brief, our simulations expand upon and improve past studies to illustrate that

monotone likelihood can consistently arise in samples as large as 1,000-2,000, espe-

cially in instances where censoring is 75% or higher. They likewise demonstrate that

monotone likelihood issues will commonly produce nonconvergence and (near-)infinite

parameter estimates within standard Cox models when samples are less than or equal

to 500 observations, no matter the level of censoring. Lastly, our simulations also sug-

gest that the Firth Cox model exhibits superior accuracy to the Cox model for all

parameters of interest, no matter the conditions considered.

Our empirical applications further illustrate the pernicious implications of mono-

tone likelihood, even for studies that employ samples with far larger N ’s than those

mentioned above. Precisely because time-varying political science duration setups

essentially guarantee extremely high proportions of censoring across all observations,
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monotone likelihood is something that researchers must consider when employing any

duration model setup. Our applications also demonstrate that researchers need not

risk omitted variable bias when encountering monotone likelihood in their empirical

research. With the application of penalized maximum likelihood estimation, fully

saturated models can be estimated even in low-variance conditions.

Altogether, our findings thereby dovetail nicely with past political science research

into Firth’s correction, especially those that (i) highlight the benefits of Firth’s cor-

rection for separation problems in binary response models (Zorn, 2005; Rainey, 2016)

and (ii) underscore the small sample size advantages of Firth’s correction in the logit

context more generally (Rainey and McKaskey, Forthcoming).

These contributions notwithstanding, future research should work to extend the

monotone likelihood solution evaluated here in at least three distinct manners. First,

and in line with Rainey’s (2016) recent discussion of Firth’s penalization within the

logistic regression context, more work should be done to explore and evaluate the

potential implications of one’s choice of prior within the Firth Cox setup. Second,

while estimation routines are available for the Firth Cox model, such programs do

not exist for many parametric duration models that are commonly used in politi-

cal science, including the Weibull, Gompertz, and log-logistic models. Developing

accessible software and code for the application of Firth’s penalization to the latter

models will further expand political scientists’ toolboxes for the accurate modeling

of duration outcomes. Finally, political scientists have begun to widely apply split

population duration models to relevant social outcomes given these models’ abilities

to accommodate mixtures of “at risk” and “immune” populations (e.g., Svolik, 2008;

Beger et al., 2017). Such multi-equation models are likely to be particularly sensitive

to monotone likelihood issues, suggesting that Firth’s correction may be an especially

promising default approach for estimation in this context.
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